等差数列高二数学教案
等差数列
教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:
一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特点:从第二项起,每一项与它的前一项的差是常数 — “等差”
二、得出等差数列的定义: 注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称: 首项 公差 2.若 则该数列为常数列3.寻求等差数列的通项公式: 由此归纳为 当 时 (成立) 注意: 1° 等差数列的通项公式是关于 的一次函数 2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若 它是以 为首项, 为公差的ap。 3° 公式中若 则数列递增, 则数列递减 4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求 出另一个。例一 (见教材)例二 (见教材)
四、关于等差中项: 如果 成等差数列则 证明:设公差为 ,则 ∴ 例四 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:
相关专题