等差数列(精选14篇)高一数学教案
等差数列(精选14篇)
等差数列 篇1
教材:(一)目的:要求学生掌握等差数列的意义,通项公式及等差中项的有关概念、计算公式,并能用来解决有关问题。过程:
一、引导观察数列:4,5,6,7,8,9,10,…… 3,0,-3,-6,…… , , , ,…… 12,9,6,3,…… 特点:从第二项起,每一项与它的前一项的差是常数 — “等差”
二、得出等差数列的定义: 注意:从第二项起,后一项减去前一项的差等于同一个常数。1.名称: 首项 公差 2.若 则该数列为常数列3.寻求等差数列的通项公式: 由此归纳为 当 时 (成立) 注意: 1° 等差数列的通项公式是关于 的一次函数 2° 如果通项公式是关于 的一次函数,则该数列成ap 证明:若 它是以 为首项, 为公差的ap。 3° 公式中若 则数列递增, 则数列递减 4° 图象: 一条直线上的一群孤立点三、例题: 注意在 中 , , , 四数中已知三个可以求 出另一个。例一 (见教材)例二 (见教材)
四、关于等差中项: 如果 成等差数列则 证明:设公差为 ,则 ∴ 例四 《教学与测试》p77 例一:在-1与7之间顺次插入三个数 使这五个数成ap,求此数列。五、小结:等差数列的定义、通项公式、等差中项六、作业:
等差数列 篇2
教学目标
1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;
(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.
2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.
3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
关于的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.
②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.
③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.
④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.
⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点 是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?
的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知 中,首项 , 则公差
(3)已知 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知 中, ,求 的值.
(2)已知 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知 中, 求 ; ; ; ;….
类似的还有
(4)已知 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究的单调性
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2) 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识通项公式;
2. 用函数思想解决问题.
四.板书设计
通项公式 1. 方程思想的运用
2. 基本量方法的使用
3. 研究的单调性
4. 研究项的符号
等差数列 篇3
教学目标
1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;
(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.
2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.
3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
关于的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.
②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.
③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.
④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.
⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点 是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?
的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知 中,首项 , 则公差
(3)已知 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知 中, ,求 的值.
(2)已知 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知 中, 求 ; ; ; ;….
类似的还有
(4)已知 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究的单调性
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2) 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识通项公式;
2. 用函数思想解决问题.
四.板书设计
通项公式 1. 方程思想的运用
2. 基本量方法的使用
3. 研究的单调性
4. 研究项的符号
等差数列 篇4
教学目标
1.理解等差数列的概念,把握等差数列的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判定一个数列是等差数列,了解等差中项的概念;
(2)正确熟悉使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;
(3)能通过通项公式与图像熟悉等差数列的性质,能用图像与通项公式的关系解决某些问题.
2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.
3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透非凡与一般的辩证唯物主义观点.
关于等差数列的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是等差数列的定义和对通项公式的熟悉与应用,等差数列是非凡的数列,定义恰恰是其非凡性、也是本质属性的准确反映和高度概括,准确把握定义是正确熟悉等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.
②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作预备.假如学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.
③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.
④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的外形相对应.
⑤有穷等差数列的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷等差数列的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥等差数列前 项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的爱好.
⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
等差数列通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对等差数列通项公式的熟悉,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的爱好.
教学重点,难点
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列 中, ,求 的值.
(2)已知等差数列 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;….
类似的还有
(4)已知等差数列 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究等差数列前 项和的最值所做的预备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数.
三.小结
1. 用方程思想熟悉等差数列通项公式;
2. 用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1. 方程思想的运用
2. 基本量方法的使用
3. 研究等差数列的单调性
4. 研究项的符号
等差数列 篇5
教学目标
1.理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题.
(1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念;
(2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项;
(3)能通过通项公式与图像认识的性质,能用图像与通项公式的关系解决某些问题.
2.通过的图像的应用,进一步渗透数形结合思想、函数思想;通过通项公式的运用,渗透方程思想.
3.通过概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对的研究,使学生明确与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.
关于的教学建议
(1)知识结构
(2)重点、难点分析
①教学重点是的定义和对通项公式的认识与应用,是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.
②通过不完全归纳法得出的通项公式,所以是教学中的一个难点;另外, 出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.
(3)教法建议
①本节内容分为两课时,一节为的定义与表示法,一节为通项公式的应用.
②定义的引出可先给出几组,让学生观察、比较,概括共同规律,再由学生尝试说出的定义,对程度差的学生可以提示定义的结构:“……的数列叫做”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是的数列作为反例,再由学生修改其定义,逐步完善定义.
③的定义归纳出来后,由学生举一些的例子,以此让学生思考确定一个的条件.
④由学生根据一般数列的表示法尝试表示,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项 可看作项数 的一次型( )函数,这与其图像的形状相对应.
⑤有穷的末项与通项是有区别的,数列的通项公式 是数列第 项 与项数 之间的函数关系式,有穷的项数未必是 ,即其末项未必是该数列的第 项,在教学中一定要强调这一点.
⑥前 项和的公式推导离不开的性质,所以在本节课应补充一些重要的性质;另外可让学生研究的子数列,有规律的子数列会引起学生的兴趣.
⑦是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.
通项公式的教学设计示例
教学目标
1.通过教与学的互动,使学生加深对通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点 是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了的概念、表示法,请同学们回忆的定义,其表示法都有哪些?
的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知 中,首项 , 则公差
(3)已知 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知 中, ,求 的值.
(2)已知 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知的一个条件(等式),能否确定一个?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知 中, 求 ; ; ; ;….
类似的还有
(4)已知 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究的单调性
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2) 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识通项公式;
2. 用函数思想解决问题.
四.板书设计
通项公式 1. 方程思想的运用
2. 基本量方法的使用
3. 研究的单调性
4. 研究项的符号
等差数列 篇6
教学目标 1.明确等差中的概念. 2.进一步熟练掌握等差数列的通项公式及推导公式 3.培养学生的应用意识. 教学重点 等差数列的性质的理解及应用 教学难点 灵活应用等差数列的定义及性质解决一些相关问题 教学方法 讲练相结合 教具准备 投影片2张(内容见下面) 教学过程 (i)复习回顾 师:首先回忆一下上节课所学主要内容: 1. 等差数列定义: (n≥2) 2. 等差数列通项公式: (n≥2) 推导公式: (ⅱ)讲授新课 师:先来看这样两个例题(放投影片1) 例1:在等差数列 中,已知 , ,求首项 与公差 例2:梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。1. 解:由题意可知 解之得 即这个数列的首项是-2,公差是3。 或由题意可得: 即:31=10+7d 可求得d=3,再由 求得1=-2 2. 解设 表示梯子自上而上各级宽度所成的等差数列,由已知条件,可知: a1=33, a12=110,n=12 ∴ ,即时10=33+11 解之得: 因此, 答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm. 师:[提问]如果在 与 中间插入一个数a,使 ,a, 成等差数列数列,那么a应满足什么条件? 生:由定义得a- = -a 即: 反之,若 ,则a- = -a 师:由此可可得: 成等差数列,若 ,a, 成等差数列,那么a叫做 与 的等差中项。 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。 如数列:1,3,5,7,9,11,13…中 5是否和风细雨的等差中项,1和9的等差中项。 9是7和11的等差中项,5和13的等差中项。 看来, 从而可得在一等差数列中,若m+n=p+q 则, 生:结合例子,熟练掌握此性质 师:再来看例3。(放投影片2) 生:思考例题 例3:已知数列的通项公式为: 分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 解:取数列 中的任意相邻两项 与 (n≥2), 则: 它是一个与n无关的常数,所以 是等差数列。在 中令n=1,得: ,所以这个等差数列的首项是p=q,公差是p.看来,等差数列的通项公式可以表示为: ,其中 、 是常数。 (ⅲ)课堂练习 生:(口答) (书面练习) 师:给出答案 生:自评练习 (ⅳ)课时小结 师:本节主要概念:等差中项 另外,注意灵活应用等差数列定义及通项公式解决相关问题。 (ⅴ)课后作业 一、课本 二、1.预习内容 2.预习提纲:①等差数列的前n项和公式; ②等差数列前n项和的简单应用。 教学后记
等差数列 篇7
教材:(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:一、复习:等差数列的定义,通项公式 二、例一 在等差数列 中, 为公差,若 且 求证:1° 2° 证明:1° 设首项为 ,则∵ ∴ 2∵ ∴ 注意:由此可以证明一个定理:设成等差数列,则与首末两项距离相等的两项和等于首末两项的和 ,即: 同样:若 则 例二 在等差数列 中, 1° 若 求 解: 即 ∴ 2° 若 求 解: = 3° 若 求 解: 即 ∴ 从而 4° 若 求 解:∵ 6+6=11+1 7+7=12+2 …… ∴ …… 从而 + 2 ∴ =2 - =2×80-30=130 三、判断一个数列是否成等差数列的常用方法 1.定义法:即证明 已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。 解: 当 时 时 亦满足 ∴ 首项 ∴ 成等差数列且公差为6 2.中项法: 即利用中项公式,若 则 成等差数列。 已知 , , 成等差数列,求证 , , 也成ap。 证明: ∵ , , 成ap ∴ 化简得: = ∴ , , 也成等差数列。 3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。 例五 设数列 其前 项和 ,问这个数列成ap吗?解: 时 时 ∵ ∴ ∴ 数列 不成ap 但从第2项起成等差数列。 四、小结: 略 五、作业:
等差数列 篇8
教学目的:1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道 中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程: 一、复习引入:(课件第一页) 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。(课件第二页) ⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。 2.等差数列的通项公式: 【或 】等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页) 三、例题讲解 例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 例2 在等差数列 中,已知 , ,求 , , 例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。 小结:①这就是第二通项公式的变形,②几何特征,直线的斜率 例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3) 例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4) 分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。 注:①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,… ②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q. ③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。 例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数.四、练习: 1.(1)求等差数列3,7,11,……的第4项与第10项. (2)求等差数列10,8,6,……的第20项. (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. (4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{ }中,(1)已知 =10, =19,求 与d; 五、课后作业:习题3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.
等差数列 篇9
教学目标 1.熟练运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题. 2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算能力.3.用类比思想加深对等差数列与等比数列概念和性质的理解.教学重点与难点 用方程的观点认识等差、等比数列的基础知识,从本质上掌握公式. 例题例1 三个互不相等的实数成等差数列,如果适当排列这三个数也可以成等比数列,又知这三个数的和为6,求这三个数。例2 数列 中, , , , , ……,求 的值。例3 有四个数,前三个数成等比数列,后三个数成等差数列,首末两个数之和是21,中间两个数的和是18,求这四个数.例4 已知数列 的前 项的和 ,求数列 前 项的和.例5 是否存在等比数列 ,其前 项的和 组成的数列 也是等比数列?例6 数列 是首项为0的等差数列,数列 是首项为1的等比数列,设
,数列 的前三项依次为1,1,2,
(1)求数列 、 的通项公式;
(2)求数列 的前10项的和。 例7 已知数列 满足, , .
(1)求证:数列 是等比数列;
(2)求 的表达式和 的表达式.
作业:
1. 已知 同号,则 是 成等比数列的
(a)充分而不必要条件 (b)必要而不充分条件
(c)充要条件 (d)既不充分而也不必要条件
2. 如果 和 是两个等差数列,其中 ,那么 等于
(a) (b) (c)3 (d)
3. 若某等比数列中,前7项和为48,前14项和为60,则前21项和为
(a)180 (b)108 (c)75 (d)63
4. 已知数列 ,对所有 ,其前 项的积为 ,求 的值,
5. 已知 为等差数列,前10项的和为 ,前100项的和为 ,求前110项的和
6. 等差数列 中, , ,依次抽出这个数列的第 项,组成数列 ,求数列 的通项公式和前 项和公式.
7. 已知数列 , ,
(1)求通项公式 ;
(2)若 ,求数列 的最小项的值;
(3)数列 的前 项和为 ,求数列 前项的和 .
8. 三数成等比数列,若第二个数加4 就成等差数列,再把这个等差数列的第三个数加上32又成等比数列,求这三个数.
等差数列 篇10
下面是98e范文网小编整理的高一数学《等差数列》说课稿模板,希望对大家有所帮助。
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情教法分析:
对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导:
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(n﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②
通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,
这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;
5. 1,0,1,0,1,……
其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互<0, 第二个数列公差>
相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,则据其定义可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)
当n=1时,(1)也成立,
所以对一切n∈n﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)2 ,
即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获)
1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式 an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本p114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。
(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
等差数列 篇11
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道 中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1. 等差数列的概念;
2. 等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教学方法
启发式数学
教具准备
投影片1张(内容见下面)
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
③
生:积极思考,找上述数列共同特点。
对于数列① (1≤n≤6); (2≤n≤6)
对于数列② -2n(n≥1)
(n≥2)
对于数列③ (n≥1)
(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:
即:
即:
……
由此可得:
师:看来,若已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项 。
如数列① (1≤n≤6)
数列②: (n≥1)
数列③: (n≥1)
由上述关系还可得:
即:
则: =
如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由
n=20,得
(2)由
得数列通项公式为:
由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即 (n≥2)
②等差数列通项公式 (n≥1)
推导出公式:
(V)课后作业
一、课本P118习题3.2 1,2
二、1.预习内容:课本P116例2—P117例4
2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
板书设计
课题
一、定义
1.
(n≥2)
一、通项公式
2.
公式推导过程
例题
教学后记
等差数列 篇12
以下是初中数学等差数列(第一课时)说课稿范文,仅供参考。希望大家喜欢!
等差数列(第一课时)说课稿
各位评委老师好,我是4号考生,我今天说课的题目是《等差数列》,我从教材分析,学情教法分析,学法分析,教学过程四方面对本节课的内容加以说明。
一、教材分析
1、教材的地位和作用:
《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a知识与技能:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深刻的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导
②用数学思想解决实际问题
二、学情教法分析:
对于高一学生,知识经验已较为丰富,具备了一定的抽象思维能力和演绎推理能力,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。学生在初中时只是简单的接触过等差数列,具体的公式还不会用,因些在公式应用上加强学生的理解
三、学法分析:
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学过程
1.创设情景 提出问题
首先要学生回忆数列的有关概念,数列的两种方法——通项公式和递推公式
然后本节课开始通过介绍
等差数列 篇13
一.教材分析及能力要求:
数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。
二.教学中的重点、难点教学
数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。
三.教学过程反思
在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。
等差数列 篇14
教学目标
1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的兴趣.
教学重点,难点
教学重点是通项公式的认识;教学难点 是对公式的灵活运用.
教学用具
实物投影仪,多媒体软件,电脑.
教学方法
研探式.
教学过程
一.复习提问
前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 ).找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 .”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第______项.
(2)已知等差数列 中,首项 , 则公差
(3)已知等差数列 中,公差 , 则首项
这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列 中, ,求 的值.
(2)已知等差数列 中, , 求 .
若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列 中, …
由条件可得 即 ,可知 ,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题
(3)已知等差数列 中, 求 ; ; ; ;….
类似的还有
(4)已知等差数列 中, 求 的值.
以上属于对数列的项进行定量的研究,有无定性的判断?引出
3.研究等差数列的单调性
,考察 随项数 的变化规律.着重考虑 的情况. 此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果.这个结果与考察相邻两项的差所得结果是一致的.
4.研究项的符号
这是为研究等差数列前 项和的最值所做的准备工作.可配备的题目如
(1)已知数列 的通项公式为 ,问数列从第几项开始小于0?
(2)等差数列 从第________项起以后每项均为负数.
三.小结
1. 用方程思想认识等差数列通项公式;
2. 用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式 1. 方程思想的运用
2. 基本量方法的使用
3. 研究等差数列的单调性
4. 研究项的符号