小学数学第六册《平均数》教学设计(精选13篇)三年级数学教案
小学数学第六册《平均数》教学设计(精选13篇)
小学数学第六册《平均数》教学设计 篇1
教学内容:
人教版《义务教育课程标准实验教科书 数学》三年级(下册)统计中求平均数例1。
教学目标:
1. 在具体问题情境中,感受求平均数的需要,通过操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。
2. 能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
3. 进一步增强与同伴交流的意识与能力,体验运用知识解决问题的乐趣,建立学好数学的信心。
教学重点、 难点:
平均数的意义及求平均数的方法。
教学过程:
一、情境导入
阳光体育运动启动后男生和女生举行了一场趣味投篮比赛,想知道他们的得分情况吗?
课件出示统计图。
(1)看到统计图,你知道了什么? (板书每组每人得分)
(2)金灿灿的奖杯在那儿等着呢,请你来当裁判,这金灿灿的奖杯该被哪组捧走呢?
学生说出自己的裁判理由,其他同学可以发表自己的意见,也可以反驳他人的观点。
当学生讨论、交流出需要求出每组平均每人得多少分时,师板书出“平均”。
(3)刚才同学们通过讨论,认为用平均数来比较那个对的实力强一些比较公平,那什么是平均数呢?(指名学生回答)
师:那么什么是平均数呢?下面老师给大家做个小实验。
二、在操作中体验平均数的涵义。
1.课件演示:出示一个玻璃水槽,里面用三块挡水板平均分成四个部分,形成四个水柱高低不同的水柱。
师:四根水柱的高度一样吗?(指名回答)
2.师继续演示:如果拿开挡水板,会发生什么?(课件演示)
师:现在高度一样了吗?(指名回答)
师:这个一样的高度就是原来四个高度的什么数?(指名回答)
师:刚才老师是怎样使他们变得一样高的呢?(拿开挡水板,水会从高处流向低处)(指名回答)
师:你的意思是把多的一一部分给少的,使大家变得一样多。这种方法我们把它们叫做“移多补少”(板书)
师:在移多补少的过程中,水的总量有没有变?(指名回答)
师:下面我们就用移多补少的方法来求出男女队投篮比赛中各自的平均数。
3.请同学们拿出你手中的小圆片代替投中的个数在小组内进行移多补少的操作。
(1)。第一组和第二组操作男生队,第三组和第四组操作女生队,摆完后在小组内交流操作过程。
(2)指名汇报交流。
4.教师用课件演示投篮的移多补少过程。
5.课件出示小练习。
5.演示后小结:(课件出示)像这样,几个不相同的数,在总数不变的前提下,可以通过移多补少是他们变得相等,这个相等的数就是这几个数的平均数。(学生齐读)
师:理解了平均数的含义,那么平均数有什么特征呢?同学们想不想做个小游戏?
三、游戏中感悟平均数的特征。
1、出示:各装有3根小棒的红蓝两个纸袋(红带内平均每根长14厘米,蓝袋内平均每根长10厘米)课件出示两个纸袋。
2、师:猜一猜,如果从两个纸袋中各拿出一根小棒,哪个纸袋拿出的小棒长些?为什么?
师:下面我们来做个游戏,请几位同学上来,每位同学从两代中各抽出一根来比一比。(请三位同学上讲台操作)
3、师:从刚才抽的小棒中,我们发现蓝袋中的小棒不一定都比红袋中的小棒短,怎么会出现这种情况呢?
.先让学生在小组里讨论,然后全班交流。(平均数大一些,并不是说每一根都长一些。平均长14厘米,不一定每一根都是14厘米,也有可能比14厘米短的,也有可能比14厘米长的。平均长10厘米的小棒,有可能正好是10厘米,也有可能比10厘米短,还有可能比10厘米长。)
4、师:(课件演示)平均数和原来那些数相比,处在什么位置?(处在中间的位置,比最大的数要小,比最小的数要大。)(课件出示平均数的特点)
师:我们感悟了平均数的特点,敢不敢挑战一下?
5、挑战练习——明辨是非
四、探索中建构平均数的算法。
1、师:前面我们用移多补少的方法求的男女队各自的平均数,知道了女队的实力强一些。如果现在要进行班与班之间的对抗赛,那么要计算什么的平均数呢?(要计算班级的平均数)
2、师:一个班有六十来名学生,如果还用移多补少的办法来获得平均数,你感觉怎么样?(指名交流)
3、师:是啊,移多补少的方法对数据较小或数据个数比较少时,还是挺管用的。但是当一组数据比较大,数据的个数有比较多的时候,这种方法就有局限性了。看来,我们需要探索一种更加通用的计算方法。
4、以小组为单位,让学生讨论计算方法:(1)平均分是怎样分的?平均分需要知道哪两个条件?(师举例:有12块糖平均分给3个小朋友,每个小朋友分几块?)
(2)哪个条件已经知道了?哪个条件还没知道?
(3)怎样求平均数?(师举例,3个小朋友一共有12块糖,平均每个孩子分几块?
(4))推出求平均数的公式。
(5)师:看来求平均数可以用公式来计算,计算时必须要知道哪两个条件?先要求出什么?
五、学习例1,巩固公式计算法。
1、出示主题图,先用移多补少的方法获得平均数。(课件演示)
2、让学生试着用公式计算例题中的平均数。
3、集体订正讲解。
六、生活中的平均数。(课件出示)
七、巩固练习。
1、算出三条彩带的平均长度。
2、算一算你们小组的平均体重。
七、课堂小结
小学数学第六册《平均数》教学设计 篇2
教学内容:人教版四年级下第90—91页例1、例2及相关内容。
教学目标:
1、使学生理解平均数的含义,知道平均数的求法。
2、了解平均数在统计学上的意义。
3、学习解决生活中有关平均数的问题,掌握应用数学知识解决问题的能力。
教学重点:理解平均数的意义,掌握平均数的方法。
教学难点:理解平均数的意义。
教、学具准备:课件、题卡、磁扣等。
一、 导入
同学们,你们喜欢做游戏吧?我们班级的同学也特别喜欢搬运玻璃球的游戏。今天老师带你们看一场30秒的运球比赛,不过看比赛有个任务,请第一、二、三组的同学分别为女1、2、3号选手计数,第四、五、六组同学分别为男1、2、3号选手计数。听清楚了吗?请看大屏幕。
二、 讲授新知
1、探究平均数的方法
师:紧张的比赛结束了,请小组长统计一下选手的成绩。我们用1个磁扣表示运了1个球,请组长们汇报运球数,把运球的个数贴到黑板上。(说一个贴一个)
师:大家看,他们每人各运了几个球?
师:请同学们观察,如果比较两组同学的成绩,你认为哪组成绩好?为什么?
生:男生成绩好。女生总数12,男生总数15。
师:对,我们比较总数,可以看出男生队成绩更好。
师:大家能不能再分别找出一个数能代表每一组的平均水平,让他们比一比,还很公平。
生:用3或者2等表示,教师要抓住问其他同学,用3代表这一组每个人的成绩可不可以。(2号7个,用3不合适)
生:4.
师:用4表示可以吗?
生:可以。
师:男生队用几表示呢?
生:5.
师:那么请大家借助手中题卡,小组合作,画一画,写一写。用什么方法得到4或者5的。想一想,为什么用这个4或5可以代表每组的水平?
生:小组合作。
师:哪个小组愿意派代表汇报一下?(只出示女生的)
生:女生队2号最多,给1号2个,给3号1个。
师:结果怎样呢?
生:让他们变得同样多。
师:谁还想说说你们的方法。(两种移多补少画法),把两种画法放在一起,他们都是把多的补给少的,然后使他们变得同样多。画一条虚线。想法都一样,只是表现方式不同而已。
师:大家听清楚了吗?谁愿意到黑板上摆一摆?
生:移多补少演示。
师:大家同意吗?
师小结:在总数不变的前提下,我们把多的匀给少的,最终让它们变得同样多,(手笔画这黑板磁扣这)数学上把这叫做移多补少(板书)。通过移多补少得到的(箭头)同样多的数(板书同样多)(向上箭头),就是这组数据的平均数。(板书)今天我们就来学习平均数的知识。那么2、7、3这组数据的平均数就是4。
师:你们用移多补少的方法表示出男生队的平均成绩吗?
生:到前面来演示。
师:同意吗?(再移回来)同学们,除了用移多补少的方法表示出平均数,还有其他的方法吗?
生:列算式。学生到黑板上演示。
(4+5+6)÷3
=15÷3
=5(个)
师:你是怎么想的?(写的同学说说自己的想法)
生:用男生队运球的总数除以3,就是每人平均运5个球。
师:听明白了吗?括号里的式子表示?除以三呢?结果5是?
师小结:我们先求总数,再除以三个人,也可以使这组数据变得同样多,这种方法就是合并平分。得到同样多的数,就是这组数据的平均数,它也是求平均数的一种方法。
师:你能用合并平分的方法,求出女生队的平均数吗?
生:汇报
师:现在我们来说一说哪一个队成绩更好呢?
生:男生队
师小结:比总数女生12,男生15。比平均数女生4,男生5。比总数和平均数都是男生胜,看来在人数相等的情况下,比总数比平均数都很公平。
2、平均数的作用
师:马老师看同学们玩得特别开心,也想玩一玩,我运了4个球,我看女生成绩少,就把这4个球加给女生了(操作,老师 4个)这回女生总数由12变成了15,反超了男生,我宣布了此次比赛女生获胜?我这个裁判公平吧。
生:公平,再观察一下,他们为什么不同意。
不公平,人数不同。
师:大家同意吗?人数不同的情况下,比总数不合理,那我们就比平均数吧!你们比一比,谁的平均数多呢?
生:4.
师:你们怎么这么快就知道了呢?
师:比较平均数哪一个对成绩更好呢?还是男生队。小结:在人数相同的情况下,我们比较总数和平均数。人数不相同,我们比较总数就不够公平了,比较平均数比较公平。
师:看来老师加入也没改变女生队输了这个结果,假如老师运了8个球(贴),这回女生队的平均数是几了呢?(5)
师:打平了。假如想让女生队的平均成绩是6,老师至少需要运几个玻璃球呢?
生:12个。
师小结:女生队其他人运球没变,随着老师运球数的增加,这组的平均数变大,所以说平均数随整组数据每一个数变化而变化。
3、平均数的性质
师:请大家观察女生队的成绩
我们得出来的平均数4是1号的实际运球数吗?是2、3号?(不是)
平均数4和这组数据的每一个数比较一下。(具体点)你发现了什么?
生:4比7少3个,比2多2个,比3多1个。
师:所以平均数4在7和2之间,也就是平均数在最大数和最小数之间。
师:我们再来看看男生队平均成绩,是不是也有这个规律?平均数5是每位选手实际运球的数量吗?
生:不是
师:平均数5和男生队每个人实际运球数比较一下。
生:平均数5和2号选手实际运球数一样多。
师:那么这个5和2号的成绩5表示的`意义一样吗?
生:不一样。一个是2号的成绩,表示他在比赛中运了5个,代表自己,一个是一组的平均水平。
师小结:我们用平均数和每个数据进行比较,在数据不等的前提下,发现平均数介于最大数和最小数之间,也可能在数值上和某个数相等。例用这个规律,我们就可以在计算平均数时,先估计平均数的大小范围,或者检验平均数是否合理。
习题:小强在20秒时间内拍球4次,分别是24下、27下、28下、29下。1、请你估一估小强拍球的平均成绩,可能是多少下?2、动笔算一下,平均成绩是多少下(27下)两张幻灯片。
师:同学们都是用哪种方法算平均成绩的?(合并平分)一般情况下,我们计算平均数时经常用合并平分的方法。
师:其实平均数在我们生活中无处不在,你知道哪些平均数呢?
生汇报:
师:对,我们经常接触的有平均身高,平均成绩,平均时间,平均气温等。早在三千年前,我国《周易》已产生了平均数的思想:
1:统计平均数就是对研究对象的某数量标志的变量,减有余而补不足所求得的一般水平。
2:计算统计平均数的作用,在于衡量事物要均等。
所以说平均数很重要,我们可以用平均数解决生活中的很多问题。
三、习题
1、课件出示“小小”冷饮店习题。
2、水深。
四、全课总结同学们,这节课我们认识了平均数,学习了平均数的计算方法。那么,让我们在以后的学习中细细去体会吧。
板书设计
平均数
合并平分 移
小学数学第六册《平均数》教学设计 篇3
教学目标:
1. 通过活动,初步感知“平均数”的概念。
2. 了解“平均数”的意义,初步学会求简单数据的平均数,能运用生活经验对“平均数”做出解释。
3. 能运用“平均数”解决现实中的问题,强化数学在生活中的运用。
教学准备:
教具:十个小皮球、两个小筐、多媒体课件
学具:五个笔筒、十五根铅笔、统计表三张
教学过程:
教学环节 设计意图 教学预设
一、游戏导入,激发兴趣
师:同学们,我们曾经玩过投球游戏,今天咱们再来一场比赛,好吗?男队、女队各出三人,看哪队能赢。请两队各派一名记录员做好统计。其他同学做裁判。学生进行比赛。赛完后展示统计表进行比较。(游戏开始,老师事前制好统计表,分发给两个统计员,进行记录。比赛两次)
二、巧设冲突,理解意义
师:听说亮亮他们也在举行投球比赛呢,咱们一起去看看吧。(多媒体展示书上的两个统计表。)
咦,怎么吵起来了?喔,原来他们在争执哪组投的成绩好呢。引导学生看课件中的两个统计表,从表中知道了什么?(人数不等及每人投中的个数)请大家帮着兔博士一起给评判一下吧。(最后定为比较平均每人投中的个数公平,多者为胜。)
师:怎样才能求出平均每人投中的个数呢?(幻灯单独出示第一组的统计表。)
师:那第一组平均每人投中的数7个,就是这组同学投球的“平均数” 。(板书)
师:谁能求一下第二组投中球的平均数?
师:为什么第一组是除以4,而第二组却除以5呢?
师:现在比较一下,哪组获胜?
生:第一组获胜。
三、自主探究,归纳方法
师:刚才我们用的是求平均数的方法裁决出第一组获胜。看来平均数用处不小啊,这不,亮亮看到妈妈经常使用不能降解的塑料袋买菜,就暗暗做了统计,想用真实的数据来说服妈妈保护环境呢。出示统计表。
师:请大家帮亮亮算一算,妈妈平均每天丢弃几个塑料袋?
师:请大家仔细观察我们上边三道题的解答过程,你知道怎样求平均数了吗?(出求平均数的数量关系式: 用总数/份数=平均数)
师:不过兔博士还有一个问题要问问大家呢。出示“议一议”1.求出的“3个”是每天实际丢弃塑料袋的个数吗?
生:不是每天丢弃的塑料袋的个数,而是算出的一个平均数。
师:出示2.求出的 “3个”与星期四妈妈丢的塑料袋3个一样吗?
不一样,求出的“3个”只是一个平均数,而星期四妈妈丢的塑料袋3个是一个实际的数,是实际丢了3个。
四、动手操作,巩固验证
师:看学得这么认真,兔博士决定来个小测验,记住,既要动手又要动脑呀。
出示做一做。
下面笔筒中放有根数不同的铅笔,如果要使每个笔筒中放的.铅笔根数不同,每个笔筒放几根?
师:谁来说一说,你是怎样想的、怎样做的。
师:大家轻松一下,来一个拍球比赛怎么样?每组为一个队,由组长做好记录,发统计表。最后看哪组平均成绩好,哪组就获胜。比赛。最后表扬优胜小队。
师:大头蛙有几个问题实在是弄不明白,谁能帮帮它?(判断题)
1.河北省篮球队队员的平均身高是厘米,a王刚是这个篮球队的队员,他身高185厘米,可能吗?b这个球队有没有身高超过厘米的队员?
2.小明所在的三年级的平均体重是28千克,小明的体重一定是28千克吗?
师:兔博士站又添新内容了,想去看看吗?
出示:
我国每人平均住房面积:城镇24平方米;农村28平方米。
我国平均每人年收入为8800元。
我国平均每人生活用水量每日为208升。
我国平均每人每年用电量为1081千瓦时。
我国男性平均身高为1.68米。
我国女性平均身高为1.54米。
看完这组数据你想说什么?
五、学以致用,拓展延伸
1. 调查自己家水费、电费平均每月要交多少元?
2. 统计本小组成员假期读书情况,并计算出小组平均每人读书多少本。
课前让学生亲历一个自己十分感兴趣的游戏,在活动中复习统计的过程,让学生感知到:“人数相等可以比总数”,为后面人数不等求“平均数”的情况埋下伏笔。
由于人数不同,(再用比较总数的方法就不公平了)所以不能用比较总数的方法来决定胜负,一时找不到解决的方法,激起学生进一步探究的欲望和兴趣,老师把富有挑战性的问题大胆抛向学生,在学生的认知思维冲突中,在解决问题的需要中,自然而然地逼近了平均数,让学生在不经意间感受到了平均数产生的价值和必要。
通过实际问题,让学生自己感悟,经历求平均数的过程,为理解平均数的意义建立了平台,又从不同的角度探索出求平均数的方法,使解决问题的方法多样化。
求完平均数提出这一问题的目的是让学生明白总量与份数是要一一对应的,加深学生对平均数计算方法的印象。
在学生学习平均数的同时进行环保教育,增强学生的环保意识。
(充分印证求平均数的计算方法)
让学生在探究的基础上,独立概括出求平均数的数量关系式。训练学生的观察、概括的能力。
让学生在具体的情境中感悟平均数的意义,知道“3个”不是妈妈某一天丢弃塑料袋的真实个数,而是一个平均数。
让学生再次明确平均数的意义。与实际数据加以区别。
通过动手动脑再次验证、巩固求平均数的方法。要给学生充分的操作时间,发挥学生的聪明才智。
根据认知规律,适当地加入学生熟悉的游戏作为教学资源,使学生能从熟悉的生活中学习平均数。
让学生进一步明确“平均数”的意义,知道平均数介于最大数和最小数之间。
设置兔博士站是为了让学生加深理解“平均数”的意义,让学生更加深刻地体会“平均数”在现实问题中的必要性,感受数学与生活的密切联系。
适时对学生进行节水节电、积极参加体育锻炼的教育。
用学过的知识来解决实际问题,体会到数学与生活的联系,感受数学的魅力。 师:男生赢还是女生赢?你是怎么裁决的?
生:男生赢,因为男生一共投进去8个,女生一共投进去了6个,所以男生赢了。
师:女生服气吗?想不想再玩一次?(第二次两队各加2人参加比赛。)
师:这次是哪队赢?你是怎么裁决的?
生:这次男生一共投进了11个球,女生一共投进了12个球,所以是女生赢。(也有可能出现相平的情况)
师:刚才你们是怎样比较出输赢的?
生:看哪队一共投中了多少个球。看哪队投中的多。
师:刚才两个裁判都用比投球总数的方法裁决出了胜利者,这种方法公平吗?
生:公平。
生1:第二组成绩好,因为他们投进球的总数多。(受前面评判方法的影响)
生2:不公平,他们人还多呢。
生3:第二组成绩好,因为他们组有投球冠军,刘杰一个人就投中9个呢。
生4:一个人成绩好不代表全组人都好。
生5:比较平均每人投中的个数就公平了。
(学生若实在说不出来老师可参与进来。老师:同学们,大家听听老师的方法行不行,我们比较这两个组平均每人投中的个数呢?)
在求平均每人投中的个数时,可能会出现两种情况:1.移多补少;2.计算
生:从8里面拿出1给6,那么这四个数都是7了,所以第一组平均每人投中7个。
生:先求出投中的总数,再除以人数就求出来了:(8+7+6+7)÷4=7(个)
生:(9+8+5+3+5)÷5=6(个)第二组投中球的平均数是6。
生:第一组投进球的总数是4个人的总数,所以要除以4;第二组投进球的总数是5个人的总数,所以要除以5
生:(1+3+2+3+2+6+4)÷7=3(个)
师:能说说你怎么想的吗?
生:先算出一周丢弃塑料袋的总个数,再用总个数除以天数,就是平均每天丢弃的塑料袋数。
生:都是用总数/份数=平均数
师:对,这就是我们求平均数的方法。板书。
学生可能会有两种认识:1.认为就是每天丢弃塑料袋的个数;(教师可以让学生再次观察表格明确不是真实的数,从而认识平均数的特点。)2.认为不是每天实际的个数。
会出现三种方法:1.移多补少;2.求平均数;3.把所有铅笔收到一起,再一根一根地分到笔筒里。
生:(边演示边叙述)从多的里面拿出来放到少的里面去。每个竹筒放3根。
生:把所有的铅笔都拿出来,再一根一根的依次分到竹筒里。
生:用刚学的求平均数的方法来做。(3+4+2+5+1)÷5=3(根)
小学数学第六册《平均数》教学设计 篇4
教学目标:
1、使学生理解平均数的含义,初步学会简单的求平均数的方法。
2、理解平均数在统计学上的意义,感受数学与生活的联系。
3、发展学生解决问题的能力。
重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。
教学过程:
一、理解平均数
1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?
2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。
3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的'笔的平均数。
4、学生讨论:你们喜欢刚才谁的方法?
二、学习计算平均数
1、出示情景图:说说老师和同学们在干什么?
2、出示统计图:引导学生收集信息。
3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。
4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?
5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。
6、小结求平均数的方法。
三、巩固训练
1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?
2、根据统计表算一算,三年段平均每班踢几下?
班级三(1)三(2)三(3)三(4)
踢的次数
四、小结:
通过这节课的学习,你们有什么收获,还有什么问题?
五、布置作业:
练习十一1、2、3
小学数学第六册《平均数》教学设计 篇5
第一步:引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
第二步:讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X==91(分)
甲小组做得对吗?有不同求法吗?
乙小组:
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2
求出以上新的一组数的平均数X’=1
所以原数组的平均数为X=X’+90=91
想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的.平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为 这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。
③利用基准求平均数X=X’+a
问:以上几种求法各有什么特点呢?
公式(1)适用于数据较小,且较分散。
公式(2)适用于出现较多重复数据。
公式(3)适用于数据较为接近于某一数据。
小学数学第六册《平均数》教学设计 篇6
导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。
导学目标:
1.使学生理解平均数的含义,初步学会计算简单的平均数的方法。
2.感知平均数的范围。
3.培养应用所学知识合理、灵活解决简单的实际问题的能力。
导学重点:理解平均数的意义,掌握求平均数的方法。
导学难点:理解平均数在统计学上的意义。
教学准备:教师:多媒体;学生:收集自己的身高
导学过程:
一、预学--谈话导入
师:期末考试成绩出来了以后,要想比较蓝鑫小组和长敏小组哪个小组的成绩好一些,怎么比较呢?
生(预测):比较总分,看看哪个小组的总分高。
生(预测):这样不公平,我们小组三个人,他们小组四个人。
生(预测):应该比较平均成绩。
师:对,应该比较他们两个小组的平均成绩。在我们数学的统计中,平均成绩也有一个名字,它叫做平均数。
每年的四月七日是世界卫生日,环境卫生对我们的身体起着至关重要的作用。为了保护环境,我们学校的环保小队利用周末的时间去收集了很多的废旧塑料瓶。出示图,你能提出哪些数学问题?
平均数教案
出示自学小贴士,学生独立完成:
1、自己想办法找出这几位同学收集的废旧饮料瓶的平均数,你有几种方法来解决。
2、这个平均数表示什么?它是不是实际每个人收集废旧饮料瓶的数量?
3、平均数与这组数相比,你有什么发现?
独立完成后组内做好分工,在组内交流,看谁说得好,看谁听得认真!
二、互学--小组交流,展示点拨
1、小组交流
师:已经计算出来的同学,小组可以在小组里面交流一下你的方法,比一比看哪个小组做的又对又快!
生(预测):可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了;
生(预测):把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止,这样把小红的一个移给小兰,小明移两个给小亮,这样每个人就一样多了;
生(预测):可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;
2、展示点拨
汇报预测:
生1(预测):我们组认为可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多;
此时可展示移动瓶子的过程;
生2(预测):我还有一种方法,可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;
生3(预测):平均数就是把收集瓶子的总数平均分给4个人,每个人得到的数量。它不是实际每个人收集废旧饮料瓶的数量;(二年级学习的平均分的`知识)
生4(预测):平均数与这组数据相比,它不等于少先队干部收集废旧瓶的实际数量,(它比最大的数字要小,比最小的数字要大,居于这两个数中间)。
师通过超链接小明下水游泳的问题,学生通过题可知平均数非实际数量,它大于一组数最小的数,小于一组数中最大的数。
讲解:想一想:为什么要把小红的瓶子移给小兰?(小红的多,小兰的少)这样把多的移补给少的,让每个同学的瓶子数量同样多,我们叫这种方法为“移多补少法”(板书“移多补少法”)。我们还有一种方法,(14+12+11+15)÷4=52÷4=13(个),就是先求出这四个人收集的瓶子的总数量52(板书总数量),然后在除以总份数4人(板书总份数),13表示什么意思?他们每个人收集瓶子数量的平均数(板书平均数)。那么这个式子应该怎么表示呢?(平均数=总数量÷总份数。)
归纳整理,总结方法:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。平均数的求法:(1)移多补少;(2)平均数=总数量÷总份数。平均数的特征:它比一组数据中大于最小的数,小于最大的数,它表示统计对象的一般水平。平均数能较好地反映一组数据的总体情况。
三、评学
1、巩固反馈
我们首先回到可得开始的时候这几位同学的介绍他们的身高,现在我们能计算出他们的身高了吗?(生齐做,选代表回答他的解答过程)
下面是5位同学为灾区小朋友捐书的情况。
姓名
杨欣宇
王 波
刘真尧
马 丽
唐小东
本数
8
6
9
8
14
平均每人捐了几本?
(8+6+9+8+14)÷5
=45÷5
=9(本)
2、拓展提升
哪一组的成绩好?
第一小组口算成绩表
姓名
孙红
丁晓
周玉
李丹
合计
正确题数
14
10
11
9
44
第二小组口算成绩表
姓名
张华
王明
赵雪
合计
正确题数
10
12
14
36
第一小组:(14+10+11+9)÷4 =11(道)答:第一组平均每人做对11道题。
第二小组:(10+12+14)÷3 =12(道)答:第二组平均每人做对12道题。
3、评价小结:
通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。
在我们生活中,平均数无处不在,请你读一读下面的话:
1.春节期间丽江旅游人数平均每天为3万人。
2.丽江旅游收入平均每天为500万元。
3.丽江今年三月份平均每天气温是15摄氏度。
4.我校三年级学生平均年龄是9岁。
5.我校三(1)班平均身高是120厘米。
6.王老师家20xx年平均每月用电85千瓦时。
7.西部最缺水的地区,平均每人每天用水只有3千克。
附:板书
平均数
移多补少法:将小红移1个给小兰,小明移2个给小亮,最后每个人都是13个。
平均分:平均数=总数量÷总份数
(14+12+11+15)÷4 =52÷4=13(个)
5
小学数学第六册《平均数》教学设计 篇7
一、说教材
1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》
2、教材分析:
随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。
3、教学重、难点:求平均数说课稿
平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。
4、教学目标
在学生计算出平均数的.基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:
知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。
能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。
情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。
二、说教法:
“求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。
三、说学法:
在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。
四、说教学过程:
五年级下册数学平均数的再认识教学设计
教学内容 平均数的再认识
教学目标
1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。
2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。
3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。
教学重点
难点 掌握求平均数的方法。
体会平均数在实际生活中的应用。
教具准备:多媒体
教学课时:1课时
教学过程
一、情境引入。
1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?
2、学生质疑,说一说你的看法。
二、新授。
1、解决疑惑。
学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。
出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。
2、求平均数的方法。
出示:“新苗杯”少儿歌手大奖赛的成绩统计表。
评委1 评委2 评委3 评委4 评委5 平均分
选手1 92 98 94 96 100
选手2 97 99 100 84 95
选手3 90 98 87 85 90
(1)把统计表填写完整,并排出名次。
(2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?
(3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。
3、教授解题策略。
题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。
求平均数的方法:总数量÷总份数=平均数。
选手1:(92+98+94+96+100)÷5=96(分)
选手2:(97+99+100+84+95)÷5=95(分)
选手3:(90+98+87+85+90)÷5=96(分)
4、计算完毕请补充统计表,并排出最终名次。
板书设计
平均数的再认识
平均数的意义。
求平均数的方法:总数量÷总份数=平均数。
小学数学第六册《平均数》教学设计 篇8
教学内容:《数学》三年级下册第58、59页
教学目标:
1.通过丰富的实例,经历进一步了解“平均数”意义的过程。
2.能够根据具体情境,利用“平均数”解决生活中的实际问题。
3.在解决实际问题的过程中,感受“平均数”在现实生活中的广泛应用。
教学准备:CAI课件。
教学过程:
教学环节
设计意图
教学预设
一、情境创设:
同学们,你们在电视里看过歌手大赛吗?你知道比赛的评分规则吗?
去年暑假,中中央电视台举办了全国少儿艺术大赛,瞧,这是红星小学的王璇参赛的照片,那她当时得了多少分呢?你们想知道吗?(课件出示参赛照片
二、探究与体验;
1.瞧,这是7个评委给她亮出的分数牌,(课件出示评分牌)
95分
95分
96分
85分
98分
93分
你能帮她算算她最后得了多少分吗?在练习本上试试吧。看谁算得又对又快。算完后和同桌说说你的想法。
2.全班交流:
刚才,同学们计算得的很认真,讨论的很热烈,下面谁来告诉大家你的答案,并说说你是怎样想的。
指名回答。
生评价谁算得对。
4.师小结过渡:
是的,在好多电视比寒中,为了体现公平公正的原则,往往采用去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分的规则评分。但是在体育比赛中还能用这样的评分规则吗?
5.议一议:
师:同学们,你们参加立定跳远比赛吗?老师是怎么给你计分的?下面是王平同学五次试跳的成绩:
第一次
第二次
第三次
第四次
第五次
167厘米
167厘米
167厘米
167厘米
167厘米
那么裁判员最后给出的成绩是多少呢?是怎么算的呢?告诉你吧,他的成绩是169厘米,而不是他的平均成绩:这是怎么回事呢?请同学们四人小组讨论讨论。
全班交流。
6.师小结:同学们说得都很有道理,是的在体育比赛中,为了给每个人更多的机会,鼓励大家超越自我,追求更快、更高、更强的奥运精神,往往用队员的最好成绩作为他的'最后成绩,而不是用他几次试跳的平均成绩。
7.通过以上的学习你了解到了哪些知识?
三、实践与应用;
师过渡:是的,在日常生活中,我们经常要用到求平均数的情况,下面就请同学们开动你的小脑筋认真想一想,下面的问题你能自己解决吗?
1. 出示练一练第1小题。学生独立完成前两步,然后集体订正。
第(3)个问题请同学们同桌交流自己的看法,然后集体交流。
2.出示第2小题,生独立完成,然后集体订正.
3.出示第三小题,生独立完成第一步,然后集体订正。
第二步,首先让学生说说:第四组这几个同学,谁跑得最快,谁跑得最慢?搞清什么是达标。那么50米的达标成绩是10秒,比这个成绩慢的同学就没有达标。想一想是哪个同学呢?和同学说说你和想法。全班交流。
四、拓展与延伸:
出示“问题讨论”让学生读题弄清题意:小明不会游泳,如果水深超过他的身高,就可能有危险,那么这个游泳池的平均水深是1米20厘米,说明了什么?小明会不会有危险?
请同学认真思考,然后和同桌说说你的想法。
从学生生活入手,调动学习的积极性,激发学习兴趣。使学生一开始就进入兴奋的学习状态。
让学生经历观察、思考、计算、交流的过程,培养学生严谨的学习态度及善于与同学交流的好习惯,从而使解题思路更加清晰。
培养学生敢干发表自己不同见解的好品质以及耐心听取别人说话的好习惯。
让学生在讨论中充分发表自己的见解,在交流中增长知识,在交流中培养表达能力,
对本节课新知识进行整合,使学生对新知识通过回顾能牢固地掌握。
在本环节中学生能独立完成的尽量让学生独立完成,师行间巡视,对有困难的学生个别辅导。
对学生普遍感到有困难的题,稍作点拨,让学生通过独立思考、同桌或前后桌交流找到解决问题的方法。
让学生运用刚学过的平均数知识,对在日常生活中遇到的实际问题进行推理、判断,从而使数学知识与学生生活实际相结合。让学生感受到数学的的重要性。
在本环节中如果有同学能完整说出比赛的评分规则,就应该给予鼓励“,你懂得可真多。”如果学生回答不出,就由老师向学生详细说明比赛的评分规则:
为了体现公平公正的原则,在实际比赛中,选手的最后得分是这样计算的;在所有评委所打的分数中,去掉一个最高分,去掉一个最低分,求剩下的几个评委的平均分。
学生可能有以下几种答案
1.(96+95+95+96+85
+98+93)÷7=94(分)
想:我先把7个评委所的评分加起来,然后再除以他们的人数,也就是求出平均分。就是她的最后得分。
(2)(96+95+95+96+93)÷5=95(分)
想:我先去掉一个最高分,去掉一个最低分,再计算剩下5个评委的平均分。
还有可能出现计算错误的现象,让学生找出错误原因。
学生可能出现的回答有;
1.王平最远能跳169厘米,说明他有这样的潜力,应该把这个成绩算做他的最后成绩。
2.因为如果最后算王平的平均成绩的话,就不能反映出一个人的最好水平,所以用平均成绩做为他的最后成绩不公平。
第三个问题让学生说出自己的想法,如可以准备28×7=196(箱),这样可以保证货源充足,其他同学可以提出不同意见,但这样容易造成货物积压,过期饮料就卖不了了。
答案应该是下周应准备和本周售出总数同样多的饮料最合适。
什么叫“达标”;国家颁布了少年儿童各年龄段的体育锻炼标准,达到这个标准的就叫达标了,没有达到这个标准的当然就没有达标了。
“平均水深1米20厘米”,说明这个游泳池有的地方深,有的地方浅,浅的地方可能还不到1米20厘米,深的地方可能会超过1米40厘米,”所以小军在这个池中是有危险的。
小学数学第六册《平均数》教学设计 篇9
平均数是统计中的一个重要概念。求平均数作为一种统计方法,在日常生活中应用很广。新课改强调:学习数学知识,应该从学生的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。在数学教学活动中,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。为此,我选取了学生身边和社会生活中一些有趣的,富有挑战性的素材进行教学。
根据本课教学内容和学生的实际情况,我制定了如下教学目标:
Ø知识目标:经历平均数产生的过程,理解平均数的概念,了解平均数的特点和作用,掌握求简单平均数的方法。
Ø情感目标:在解决问题的过程中培养学生的分析、综合、估算和说理能力。建立学习数学的信心。
Ø价值目标:渗透统计初步思想。
我按照三个步骤铺设教学过程:
一、课刚开始,通过“比比眼力”的活动从实际操作层面让学生在移动笔筒里的铅笔的过程中学会用“移多补少”、“先总后分”的方法使得三个笔筒里的铅笔同样多。
二、在新课部分,我安排了四个活动。
第一个活动从学生感兴趣的“套圈”游戏入手,提出“怎样比较男女生哪一方套得准一些?”使学生产生困惑,掀起学生积极思维的高潮,通过激烈的讨论,引出平均数的概念。体验平均数产生的过程,从而理解平均数的本质意义,学会求平均数的方法。
第二个活动“见多识广”,围绕熟悉而感兴趣的问题,让学生用自己的语言谈谈对平均数的感受,理解平均数的意义。同时使学生进一步体会平均数与社会生活的密切联系。
第三个活动“明辨是非”,用平均数解决生活中的实际问题,进一步理解平均数的意义,体验学习数学解决实际问题的乐趣。
第四个活动“一鼓作气”,学会准确估算平均数的范围以及计算简单的平均数,并适当地对学生进行了“节约用水”和安全的教育,实现了数学教育的多重价值。
三、最后总结全课,在“智力冲浪”中设计了一次有趣的射击比赛,让学生体会平均数的变化,从而得出解决问题的策略,让这堂课在不知不觉中得到了升华。
课堂上,以学生的发展为本,给孩子提供自主探索的时间和空间,着眼于经历、体验、感受平均数的产生,理解平均数的本质意义,关注学习过程,让孩子学会思考,学会解题的策略,更加关注学生的情感态度和价值观,激励孩子学习数学的信心。这样我们的数学将充满乐趣。但由于教学经验的缺乏和教学水平的有限,本节课还存在很多的不足,恳请各位多提宝贵意见。
小学数学第六册《平均数》教学设计 篇10
教学内容
第1课时平均数的意义及求平均数的方法
教学活动是师生积极参与交往互动,共同发展的过程。教材用象形统计图呈现了每名同学收集到的矿泉水瓶的数量,通过“移多补少”的方式使学生知道求平均数的过程。整个探究过程,师生从具体直观的实物矿泉水瓶过渡到抽象的数,学生的思维仍处于由具体形象思维过渡到抽象逻辑思维的转折时期,仍需要依据实际经验或借助具体形象,通过下定义的方式获得概念。针对这一特点,在教学例1时,从以下三方面入手:
1.让学生根据已有的生活经验、实践操作以及多媒体动态演示,把概念的关键性和认知结构相联系,使学生掌握概念。
2.针对四年级学生好奇心强,有求知欲望,具有一定的探索意识的特点,在教学时,学生将通过数学活动了解数学与生活的密切联系,学会综合运用所学知识和方法解决问题。
3.教师以组织者、合作者的.身份引导学生从不同角度发现生活中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立解决某些简单的实际问题。
课前准备
教师准备多媒体课件
学生准备小棒
教学过程
⊙讲故事,激趣导入
师:同学们,你们喜欢听故事吗?老师给大家讲一个唐僧师徒四人在西天取经途中发生的故事。(课件出示)有一天,孙悟空摘了一些又大又红的桃,猪八戒抢着分了起来,分给孙悟空2个,师傅3个,沙和尚3个,自己4个。同学们,你对猪八戒的分法有什么看法呢?(这样分不公平)
(1)提问:那么怎样分才公平呢?(把这些桃合起来再平均分,每人3个)
(2)指名汇报分法。
生1:4比2多2,从4中拿出1给2,则每份都是3。
生2:把这些桃放在一起,再重新平均分。
师:大家看,现在就公平了,平均每人分得3个桃。这个“3”在数学上就叫2、3、3、4这一组数的平均数。在生活中经常要用到平均数,今天我们就来学会平均数。(板书课题)
设计意图:从故事情境中引入学会内容,不仅激起了学生学会平均数的兴趣,而且为一节课的顺利进行创设了良好的开头。
⊙自主探究,理解新知
1.教学例1。(课件出示主题图)
(1)提问:他们4人收集的矿泉水瓶一样多吗?怎样理解“平均每人收集了多少个?”(强调:假设每人收集的矿泉水瓶同样多)
(2)根据学生的回答,老师提问:请同学们想一想,怎样才能使他们4人收集的矿泉水瓶一样多?
学生操作:拿出小棒,一根小棒代替一个矿泉水瓶,先按每个人收集的个数摆放,再动脑想、动手操作,使4人收集的矿泉水瓶同样多。
(3)学生汇报自己的想法。
师:为什么要把小明的2个移给小亮,小红的一个移给小兰呢?(因为小明收集得最多,把多的移出来补给少的)
(4)老师边演示边小结。
我们通过把多的矿泉水瓶移出来补给少的,使得每个人收集的矿泉水瓶同样多,这种方法就是“移多补少法”。用这种方法可以求出他们4人平均每人收集的矿泉水瓶的个数。
2.提问:除了这种方法,你还有其他的方法吗?(先把4个数合起来,再平均分)
小结:“合”就是求出4人一共收集了多少个矿泉水瓶,“分”就是把收集的矿泉水瓶的总数再平均分成4份,求每份是多少。(先求出矿泉水瓶的总个数,再除以4)
设计意图:学生通过移一移、画一画、算一算,从感官上理解平均数的由来,理解平均数的意义。
3.总结算法。
(1)提问:同学们能根据这个想法写出算式吗?
(师生共同完成板书)
(14+12+11+15)÷4
=52÷4
=13
(2)分析算式:我们把“14+12+11+15”的和称为总数量,“4”称为总份数,“13”就是平均数,也就是平均每人收集的个数。通过刚才的计算我们可以得出一个关系式:总数量÷总份数=平均数。
小结:我们可以利用“移多补少”的方式来求平均数,还可以用“先合后分”的方式来求平均数,在掌握基本方法的同时,还要学会根据题目中数据的特点灵活选择算法,怎样算简便就怎样算。
设计意图:给学生营造一种自主探究的学会氛围,让学生在探究中发现问题
小学数学第六册《平均数》教学设计 篇11
教学目标
1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。
2、使学生认识统计与生活的联系,发展学生的实践能力。
3、巩固求平均数的计算方法。
教学过程:
一、情景导入
1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别倒入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?
2、学生动手解决,并交流解决的方法。
3、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?
(1)组织交流解决的方法。
(2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。板书课题。
二、探究体验
1、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队。
2、引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。
3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的平均身高分别是多少?并说说估的方法。
4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,然后比较哪一队高?
5、组织交流计算的方法与结果。
6、组织讨论:从刚才的这件事,你有什么发现?
7、小结:平均数能较好地反映一组数据的总体情况。
三、实践应用
1、说说生活中还有哪些事要通过求平均数来解决问题。
2、生独立完成练习十一第4、5题。
四、全课总结
1、通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?
2、师总结。
小学数学第六册《平均数》教学设计 篇12
一、 复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、 创设情境,自主探索
1. 呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2. 引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的`也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4. 理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比最大的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比最大的数小,比最小的数大大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
小学数学第六册《平均数》教学设计 篇13
设计说明
数学问题来源于生活,并应用于生活。教材统计了学生踢毽的个数并通过比较男、女两队哪个队踢得多,提出数学问题。课堂再现踢毽比赛情境,学生统计比赛结果后,发现参赛男、女生人数不同,无法直接判断哪队胜,引出数学问题,激发学生的求知欲望,进而让学生探究解决问题的方法。
1.本节课重点创设在课堂上现场进行踢毽比赛的情境,让学生感受到平均数在生活中的重要作用,并在解决问题中感受:在数据个数不等的情况下,每组数据的总和不能反映总体情况,而用平均数才能反映每组数据的整体水平,从而加深学生对平均数的`含义的理解。
2.教师与学生只是角色上的不同,在人格上是平等的。教师必须尊重学生的人格、思想感情、健康的个性并接受学生提出的合理要求,营造和谐平等、相互尊重、轻松愉悦的学习气氛。学生在这样的气氛下讨论怎么比较哪队胜合理时,才会开动脑筋认真思考、踊跃发言、大胆回答。
课前准备
教师准备多媒体课件调查表统计表
学生准备调查表统计表
教学过程
⊙创设情境,引入新课
1.同学们喜欢哪些体育运动呢?今天我们在课堂上就进行一场踢毽比赛,男生队选出5名代表,女生队选出4名代表,选两名同学做监督员,两名同学做成绩记录员。
2.开始比赛,记录成绩。
男生队
姓名
踢毽个数
女生队
姓名
踢毽个数
3.比赛结束了,哪个队的成绩好呢?
⊙引导启发,探究新知
1.××小学也举行了踢毽比赛,看教材91页中的数据,我们怎么才能知道哪个队的成绩好呢?请同学们借助课堂活动卡,小组讨论交流。(出示课堂活动卡)
2.小组汇报。
生1:我们小组通过讨论、交流认为:要想知道哪个队的成绩好,算一算每个队踢毽的总数就可以了,总数多的就代表成绩好。
生2:我们小组不同意这种做法,这样不公平,因为两队的人数不一样。
生3:我们小组认为用每队的平均成绩来比较是合理的。男生队平均每人踢毽个数是(19+15+16+20+15)÷5=17(个),女生队平均每人踢毽个数是(18+20+19+19)÷4=19(个)。通过比较平均数得出:女生队的成绩好。
师:现在同学们用上面求平均成绩的方法来解决上课开始时提出的男生队和女生队哪个队的踢毽子成绩好的问题。