《圆锥的体积》课例分析(通用13篇)六年级数学教案

98e范文网 时间:

《圆锥的体积》课例分析(通用13篇)

《圆锥的体积》课例分析 篇1

  一、教材分析

  圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.

  二、教学过程

  (一)引出课题

  1、师:同学们,看一看祝老师手中拿的是什么?

  生:这是一个圆锥体.

  2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?

  生:可以,我们可以用排水法来求出它的体积.

  师:如果是一个很大的一个圆锥体还用这种办法,会怎样?

  生:能求出来但会很麻烦.

  师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)

  (二)实验探究推导公式

  1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?

  生:圆柱体

  2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)

  学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.

  师:其他种和他们一样吗?

  生:不一样.

  师:谁还愿意汇报.

  生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.

  生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍

  2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?

  生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。

  3、师小结:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母v来表示圆锥体的体积,s表示它的底面积,h表示它的高。v=1/3sh。

  (三)巩固练习

  1、判断

  (1)圆柱体的体积是圆锥体体积的3倍。          (   )

  (2)圆柱体的体积大于与它等底等高的圆锥体的体积。    (   )

  (3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。   (   )

  2、解决问题

  (1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?

  (2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?

  (3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?

  三、教学反思 

  这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。

  1、难点分散。

  针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。

  2、导入的新颖。

  情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。

  3、教学手段和练习配套。

  教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。

  4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。

《圆锥的体积》课例分析 篇2

  教学目标:

  1、通过动手操作实验,推导出圆锥体体积的计算公式。

  2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

  3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

  教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

  教学过程设计:

  一、复习旧知,做好铺垫。

  1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)

  2、口算下列圆柱的体积。

  (1)底面积是5平方厘米,高 6 厘米,体积 = ?

  (2)底面半径是 2 分米,高10分米,体积 = ?

  (3)底面直径是 6 分米,高10分米,体积 = ?

  3、认识圆锥(课件演示),并说出有什么特征?

  二、沟通知识、探索新知。

  教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)

  1、探讨圆锥的体积计算公式。

  教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?

  学生回答,教师板书:

  圆柱------(转化)------长方体

  圆柱体积计算公式--------(推导)长方体体积计算公式

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

  (1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

  (学生得出:底面积相等,高也相等。)

  教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?

  (不行,因为圆锥体的体积小)

  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验,并借助课件演示。

  (教师深入小组中了解活动情况,对个别小组予以适当的帮助。)

  a、谁来汇报一下,你们组是怎样做实验的?

  b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

  (学生发言:圆柱体的体积是圆锥体体积的3倍)

  教师:同学们得出这个结论非常重要,其他组也是这样的吗?

  学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

  (板书圆锥体体积计算公式)

  教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  (教师给体积公式与“等底等高”四个字上连线。)

  进一步完善体积计算公式:

  圆锥的体积=等底等高的圆柱体体积×1/3

  =底面积 × 高×1/3

  V = 1/3Sh

  教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  课件出示:

  想一想,讨论一下:?

  (1)通过刚才的实验,你发现了什么?

  (2)要求圆锥的体积必须知道什么?

  学生后讨论回答。

  三、 应用求体积、解决问题。

  1、口答。

  (1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

  (2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

  2、出示例题,学生读题,理解题意,自己解决问题。

  例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  a、 学生完成后,进行小组交流。

  b 、 你是怎样想的和怎样解决问题的。(提问学生多人)

  c 、 教师板书:

  1/3×19×12=76(立方厘米)

  答:它的体积是76立方厘米

  3 、练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

  4、出示例2:要求学生自己读题,理解题意。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

  (1)提问:从题目中你知道了什么?

  (2)学生独立完成后教师提问,并回答学生的质疑:

  3.14×(4÷2)2×1.2× 1/3 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

  5、比较:例1和例2有什么不同的地方?

  (1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

《圆锥的体积》课例分析 篇3

  教学内容:

  本课是九年义务教育人教版小学数学第十二册的内容,是在学习了圆柱的体积计算和圆锥的特征的基础上进行教学的。教学目标:1、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。2、培养学生的观察,猜测、操作能力。3、培养学生良好的合作探究意识,引导学生掌握正确的学习方法。教学重点、难点、关键:重点:圆锥的体积计算公式难点:圆锥体积计算公式的推导过程关键:学生通过实验操作,理解“圆锥的体积等于与它等底等高圆柱体积的三分之一。”教学过程:一、联系生活,激趣导入师:同学们,老师有一个问题,看谁能帮助我解决。有两种冰淇淋,一种是圆柱形的,2元一支,一种是圆锥形的,0.5元一支,你们说老师买哪种冰淇淋合算呢?生有的说买圆柱形的合算,有的说买圆锥形的合算。(大家争论不休)(这时,我把这两种不同意见的学生分成两组,各派代表说说自己的理由)。生甲:圆柱形上下一样粗,冰淇淋装得多些,所以买圆柱形合算。生乙:那也不一定。如果圆锥形冰淇淋的底比圆柱形的底大些,那么圆锥形的冰淇淋就不一定比圆柱形的少。生甲:虽然圆锥形的底大,但它的上面是越来越小,这样冰淇淋装得还是少些,所以买圆锥形的不合算,还是买圆柱形的好。生乙:不错,圆锥形的上面是越来越小,但如果圆锥形比圆柱形高些呢?……(通过辩论,学生逐渐明白了,合不合算,应该与它们的体积有关。)师:为了解决这个问题,我们先来学习“圆锥的体积。”(板书课题)二、探究新知1、猜测:你们认为圆锥的体积和什么图形的体积联系密切?(讨论后,大家一致认为应该与圆柱的体积有联系。)2、实验:下面我们来分组做实验,看看它们之间有什样的联系?(1)请各组拿出实验材料(课前准备好的)每组等底等高,等底不等高,等高不等底的圆柱和圆锥各一对,黄沙一袋。另外,每组发一份实验报告单。(见下表)

  实验报告 一、实验目的:研究圆锥的体积公式。 二、实验步骤:(1)比较圆锥,圆柱的底和高。(2)在圆锥里装满沙,再倒入圆柱内,倒几次才能正好把圆柱装满。 (3)将实验结果填入下表。   圆锥、圆柱的特征 次数   等底等高   等底不等高   等高不等底   不等高不等底   三、问题讨论:通过实验,你发现圆柱的体积与圆锥的体积之间有什么关系?

  (2)介绍实验方法:先在圆锥内装满沙土,圆锥口要抹平,然后把沙土倒入圆柱内,看看几次可将圆柱倒满。(3)学生小组合作边实验边填报告单。(4)汇报实验结果。大家都发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一。(5)验证实验结果(因为沙粒之间有空隙,结果不十分精确。老师拿出透明的等底等高的圆锥和圆柱一对,用水作实验,进一步验证其结果。)(6)推导出圆锥体积计算公式。3、公式运用。出示例1:一个圆锥形的零件,底面积是19平方厘米,高12厘米,这个零件的体积是多少?(学生独立列式计算后集体订正)4、质疑:“圆锥的体积是圆柱体积的三分之一”这句话正确吗?三、巧设练习,开拓思维。1、填空。(1)等底等高的圆锥和圆柱,圆柱的体积是圆锥体积的( ),圆锥的体积是圆柱体积的( )。(2)把一个圆柱木块削成一个最大的圆锥,应削去圆柱体积的( )2、开放题。有一个近似于圆锥的稻谷堆,测得它的底面周长是12.56米,高是1.2米,这堆稻谷的体积是多少立方米?3、解决课伊始的问题。假如圆柱形的冰淇淋和圆锥形的冰淇淋等底等高,你们说买哪种合算呢?4、探究题师:我们学习的是一些规则图形的体积计算公式,但现实生活中有很多东西都是不规则的,如:鸡蛋、不规则的石块等,如何测量它们的体积呢?四、课堂总结。师:通过这节课的学习,你知道些什么?你掌握了哪些学习方法?教学反思:这节课有两大特点。一是教师大胆放手,让学生自己动手实践,自主探索,合作交流,从而培养了学生的自主学习的能力。二是改变了以往的单项实验为多项实验。以往在教圆锥的体积公式推导时,都是直接用等底等高的一对圆柱和圆锥去实验,我认为这样做,从表面上看是让学生在动手实验,而实质上是在重操前人研究的实验结果,没有达到实验的真正目的。本节课中的实验设计是分别用等底等高、等底不等高、等高不等底、高底都不等的圆柱和圆锥去实验,让学生大胆尝试,在自主探索与合作交流中主动获取知识。这样学生不仅能真正理解、掌握知识,而且还能感受到成功的喜悦,增强了他们学习的自信心。

《圆锥的体积》课例分析 篇4

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面的;

  生:我选择高是的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? V锥=1/3Sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

《圆锥的体积》课例分析 篇5

  教学目标:1、组织学生进行实验,培养学生动手操作的能力,并推导出圆锥体积的计算公式。

  2、学生会运用圆锥的体积计算公式计算圆锥的体积。

  3、培养学生的观察、比较、分析、综合能力,发展学生的空间观念。

  4、渗透转化的数学思想。

  教学重点:圆锥体积公式的推导和应用。

  教学难点:圆锥体积公式的推导过程。

  教具准备:圆锥和圆柱、沙子、细绳、直尺。

  教学过程:

  一、复习导入:

  1、圆柱有哪些特征?怎样计算圆柱的体积?

  2、计算下面圆柱的体积(口答算式):

  (1)底面积是15平方厘米,高是4厘米;

  (2)底面半径是2分米,高是5分米;

  (3)底面直径是6米,高是2米。

  3、圆锥有哪些特征?

  4、创设情境:天气越来越暖和,商家举行饮料促销活动。盛饮料的杯子有圆柱和圆锥两种形状。演示让学生明白圆柱和圆锥等底等高。在两个杯子里分别装满饮料,一杯要4角钱,一杯要1元钱,如果打5折卖,分别卖多少钱?(2角、5角)你愿意买哪一杯?为什么?到底买哪一杯最划算呢?那就要知道这个圆柱和圆锥体积之间到底存在什么样的关系,带着这个问题,今天我们来研究圆锥的体积。

  二、实验操作,推导公式:

  1、什么是圆锥的体积?

  如果在圆柱或圆锥里面装满饮料或沙子,忽略厚度不计的话,饮料或沙子的体积就可以看作是圆柱或圆锥的体积。

  2、拿出自己做的等底等高的圆柱和圆锥来做实验。

  (1)把圆柱里面装满沙子,然后往圆锥里面倒,把圆锥到满,看可以到几次才能倒完。或者把圆锥装满,再往圆柱里面倒,看几次能把圆柱倒满。

  (2)汇报实验结果:在学生汇报时,教师要向学生明确,因为我们做的圆柱和圆锥尺寸上存在误差,沙子颗粒之间也有间隙,也会有一定的误差。所以实验结果可能会因此不太准确。

  (3)课件演示:初步总结实验结果

  (4)拿出不等底等高的圆柱和圆锥,小组合作再次实验,强调“等底等高”这个条件。

  (5)得出结论:圆锥的体积是与它等底等高的圆柱体积的。

  3、练习;一个圆柱的体积是45立方分米,与它等底等高的圆锥的体积是多少立方分米?

  照应前面,现在让你选择,你会买哪一杯饮料?为什么?

  4、根据圆柱的体积公式,总结出圆锥的体积计算公式是v=1/3sh

  三、应用公式:

  1、出示例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  读题分析,学生独立完成。

  2、练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米。它的体积是多少立方分米?

  (2)、一个圆锥的底面半径是4厘米,高是21厘米。它的体积是多少?

  (3)、一个圆锥的底面直径是20厘米,高是9厘米。它的体积是多少?

  四、实践应用:

  1、将自己盘子里的沙土做成一个近似的圆锥形,如果想知道这个圆锥形沙堆的体积,需要测量哪些数据?该怎样测量呢?小组合作,利用老师给你准备的材料和工具,动手测量,讨论总结测量方法

  2、汇报讨论结果:

  五、全课总结:

《圆锥的体积》课例分析 篇6

  各位领导、各位同仁:

  大家好!

  今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。

  一、说教材

  1、教材分析

  “圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。

  教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.

  2、学情分析

  学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。

  对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。

  3、教学目标

  知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。

  过程与方法目标: 通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。

  情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。

  4、教学重难点

  教学重点:理解和掌握公式,能正确运用公式解决实际问题

  教学难点:圆锥体积公式的推导过程

  5、教具、学具准备

  教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺

  二、说教法

  在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:①、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);②、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。《圆锥的体积》说课稿

  通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:v= 《圆锥的体积》说课稿 sh

  在公式运用方面:采取逐步深入的模式,让学生讨论在:①、已知圆锥的高与底面半径;②、已知圆锥的高与底面直径;③、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。

  这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。

  三、说学法

  以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。

  新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。

  针对本节,在学法上主要采取:

  1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

  四、说教学程序

  本节课的教学,我安排了6个教学程序:

  1、学生自主探索,预习

  第一步:回忆《圆锥的认识》

  (1) 让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?

  引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。

  顶点

  圆心

  高

  (2) 让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。

  (3)图里画的这条高和底面圆的所有直径有什么关系?

  (4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)

  第二步:回忆圆柱体积的计算公式

  画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:

  圆柱的体积=底面积高

  v圆柱= s·h

  第三步:课堂展示

  (1)我想知道堆起的沙堆的体积怎么办?

  (2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?

  (3)你感觉它和前面学过的那个图形联系密切?

  (4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式 。

  2、实验操作

  这个环节分两个步骤进行。

《圆锥的体积》课例分析 篇7

  【教学内容】

  圆锥的体积(1)(教材第33页例2)。

  【教学目标】

  1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

  2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

  【重点难点】

  圆锥体积公式的推导过程。

  【教学准备】

  同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

  【情景导入】

  1、复习旧知,作出铺垫。

  (1)教师用电脑出示一个透明的圆锥。

  教师:同学们仔细观察,圆锥有哪些主要特征呢?

  (2)复习高的概念。

  A、什么叫做圆锥的高?

  B、请一名同学上来指出用橡皮泥制作的圆祝型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  2、创设情境,引发猜想。

  (1)电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

  (2)引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

  【新课讲授】

  自主探究,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

  (1)小组实验。

  A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

  B、同组的`学生做完实验后,进行交流,并把实验结果写在黑板上。

  (2)全班交流。

  ①组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

  A、圆柱的体积正好等于圆锥体积的3倍。

  B、圆柱的体积不是圆锥体积的3倍。

  c、圆柱的体积正好等于圆锥体积的8倍。

  D、圆柱的体积正好等于圆锥体积的5倍。

  E、圆柱的体积是等底等高圆锥体积的3倍。

  f、圆锥的体积是等底等高圆柱体积的。

  ②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  ③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

  圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

  (3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

  (4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

  (5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

  【课堂作业】

  完成教材第34页“做一做”第1题。

  先组织学生在练习本上算一算,然后指名汇报。

  答案:13×19×12=76(cm3)

  【课堂小结】

  教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

  【课后作业】

  1、完成练习册中本课时的练习。

  2、教材第35页第3、4、5题。

  答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

  第4题:(1)25、12(2)423、9

  第5题:(1)×(2)√(3)×

《圆锥的体积》课例分析 篇8

  一、教学内容:六年制小学数学教材第十二册第25-26页

  二、教学目标:

  1、知识技能目标:

  ◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

  ◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

  2、思维能力目标:

  ◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

  3、情感态度目标:

  ◆培养学生的合作意识和探究意识;

  ◆使学生获得成功的体验,体验数学与生活的联系。

  三、教学重点、难点:

  重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  难点:探索圆锥体积方法和推导过程。

  教学过程:

  一、质疑引入

  1 圆锥有什么特征?指名学生回答。

  2 说一说圆柱体积的计算公式。

  (1)已知 s、h         求 v

  (2)已知 r、h         求 v

  (3)已知 d、h         求 v

  3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

  板书课题:圆锥的体积

  二、新课

  (一) 教学圆锥体积的计算公式

  1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)

  2、 教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?

  先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式

  〈1〉学生独立操作

  让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?

  〈2〉教师教具演示巩固学生的操作效果,cai课件演示

  a 屏幕上出示等底、等高

  b 等底、不等高

  c 等高、不等底

  实验报告单

  实验器材

  实验结果

  等底不等高的圆锥、圆柱

  等高不等底的圆锥、圆柱

  等底等高的圆锥、圆柱

  〈3〉引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )

  用字母表示圆锥的体积公式.v锥=1/3sh

  做一做:

  填空:

  等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(   ),圆锥的体积是圆柱的体积的(   )已知圆锥的体积是9立方分米,圆柱的体积是(   );如果圆柱的体积是12立方分米,那么圆锥的体积是(    )。

  (二)运用公式,尝试练习

  1、要求圆锥的体积,必须知道哪两个条件?为什么要乘 1/3 ?

  试一试:

  一个圆锥体,底面积是19平方米, 高是12分米。这个圆锥的体积是多少?

  2、思考:求圆锥的体积,还可能出现那些情况?

  (如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)

  练一练

  3、求下面的体积。(只列式不计算)

  (1)底面半径是2 厘米,高3厘米。

  3.14223

  (2)底面直径是6分米,高6分米 。

  3.14(6 ÷2)2 6

  (3)底面周长是12.56厘米,高是6厘米

  3.14(12.56 ÷6.28)2 6

  2、求下面各圆锥的体积如图(单位厘米)

  (1)底面直径是8分米,高9分米      (2)底面半径3分米和高7分米

  通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高

  a、底面积和高

  b、底面半径和高              

  c、底面直径和高              

  d、底面周长和高

  三、巩固练习

  1、判断:

  ⑴、圆锥的体积等于圆住体积的1/3。(      )

  ⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3  (      )

  ⑶圆柱的体积比和它等底等高圆锥的体积大2倍。(   )

  ⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的  

  2、填空

  ⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是(     )。

  ⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米, 圆锥的高是(   )。

  ⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是(    )。

  3、拓展练习

  工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)

  (引导学生说出怎样测量沙堆的底面的周长、直径、和高。)

  用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

《圆锥的体积》课例分析 篇9

  人教版六年级数学下册《圆锥的体积》教学反思

  圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。以往几次,都是按老方法进行,一开始教师就准备了一个圆柱和一个圆锥,先比较它们的底面积相等,再分别量出它们的高也相等。进而由老师做实验,把圆锥装满水(或沙)往圆柱里倒,学生观察倒了几次正好把圆柱装满。接着推导圆锥的体积等于圆柱体积的三分之一,并重点强调求圆锥的体积一定要乘三分之一。一节课上下来非常轻松,非常顺利,时间也充足,作业效果也还不错。可是到了综合运用问题就出来了:忘记乘三分之一的,计算出错的,已知圆锥的体积和底面积,求高时,直接用体积除以底面积的,出的错误五花八门。

  再上这节课时,我加强了以下几个点的教学,收到了较好的效果。

  1、教学新课时,我出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;

  2、实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。学生获得的不仅是新活的数学知识,同时也获得了探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  3、学生做图形应用题时,引导学生审题,先确定是什么图形,再想相应的计算公式,最后根据公式列出算式。这样对于后面的综合运用题,学生有了这种固定思维模式,就不会乱列式,

  4、列出算式后,不要按部就班的从左算到右,先观察算式的特点,寻求简单的计算方法,把口算和计算有机结合。如:3.14(4÷2)²8时,先口算(4÷2)²=4,再口算48=32,最后再计算3.1432。又如:3.14(4÷2)²9时,先口算9=3,(4÷2)²=4,34=12,再计算3.1412。这样就大大地减少了学生计算难度,提高了计算的正确率。

  教后反思:

  上课一开始,有针对性地对圆锥体积公式进行复习,了解学生对已有知识的掌握程度,便于教师调控教学进度,为本节课的教学起到较好的铺垫作用。学生在已有圆锥体积计算方法的基础上,通过自主探究寻找解决问题的方法,学与思相结合,教师适时的点拨,引导学生解决问题时学会有序的思考,有利于学生逻辑思维能力的培养。通过对生活中的常见问题的解答,开阔了学生的视野,有利于学生的思维拓展,激活了学生的思维,培养学生运用数学的意识。在教学中,重视学生自主探究,尊重学生的意见,重视知识与生活的紧密联系,通过独立思考、小组合作等方式,把抽象的知识形象化,提高学生解决问题的能力。

  《圆锥的体积》教学反思

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利用以学生认识发展规律为依托 :发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在“认识—实践—再认识、再实践”中理解运用知识。反思教学过程,主要有以下几点体会:

  一、观察引导

  让学生观察用卷笔刀削铅笔,明白刚才那一截是圆柱体,现在这一截变成了圆锥体。启发学生:削成后的这一部分体积与原体积比较有无变化?学生回答是肯定的,削后体积变小了。变小了以后的圆锥体是原圆柱体的几分之几?也就是说圆锥体体积与圆柱体体积有什么联系?圆锥体体积公式如何推导?带着问题去看书。

  二、巧置陷阱

  学生看书后知道圆锥体体积等于等底等高圆柱体积的三分之一。但对“等底、等高”这个条件往往不注意。为了突出“等底、等高”这个条件的重要性,我巧置陷阱,让学生分组操作,(有一组的圆柱和圆锥体的容器不是等底等高的,有一组的圆柱和圆锥体的容器是等底等高的),去验证课本上的知识。学生进行倒水实验:用圆锥体容器盛满水倒入圆柱体容器。过了一会儿,一个小组倒了3次水,还没灌满;而另一小组的同学却大叫:“水溢出来了!”这是什么缘故呢?学生们议论纷纷。

  三、柳暗花明

  这时正是学生思维活动进入高潮时,我拿出等底等高的圆柱体和圆锥体两个容器,用圆锥体量水三次正好灌满圆柱体,引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。而在这样的过程中我放手让学生去想、去做,鼓励学生以多角度去思考问题。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  四、归纳总结

  刚才同学们发现圆锥体体积等于等底、等高圆柱体体积的,现在圆锥体体积公式如何推导?学生很容易得出:

  v圆锥体=sh÷3

  但在教学过程中我发现了几个值得我思考和改正的问题:

  1、在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多。

  2、有些学生在计算过程中常忘记除以3,需要加强练习。

  3、对学生的操作关注不够到位。

  采取的措施:

  1、培养学生养成良好的学习习惯,做题时认真仔细。

  2、上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。同时也会把时间更多的放在钻研教材上,把每一节课上得有声有色。

  《圆锥的体积》教学反思

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

  (1)密切数学与现实的联系,富有儿童情趣。

  学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米;最后,习题中又回归生活,延伸了课堂。

  (2)致力于改变学生的学习方式。

  在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。

  (3)学习过程中揭示了一般科学的研究方法。

  提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。

  纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。

《圆锥的体积》课例分析 篇10

  【教材分析】                

  本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

  【设计理念】

  数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

  【教学目标】

  1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

  2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

  3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

  【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。

  【教学难点】圆锥体积公式的推导

  【学情分析】

  学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。

  【教法学法】试验探究法 小组合作学习法

  【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)

  【教学流程】

  一、回顾旧知,沟通联系。(2分钟)

  师:同学们,前几节课我们学习了有关圆柱体和圆锥的知识, 李老师在上新课前,想考考大家,看大家学习得怎么样。好吗?

  生:好。

  1、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  2、完成练习题,让学生复习圆柱体体积公式。

  二、创设情景,引出问题。

  1.出示圆锥形小麦堆的图片。(4分钟)

  师:同学们,看,小麦堆得像小山一样,小麦丰收了。爸爸出了一道难题考小芳,让她算算这堆小麦的体积。这可难倒小芳了,因为她只学过圆柱的体积计算,圆锥体怎么样计算还没有学,你可以帮帮她吗?

  生:可以。

  师:关于圆锥,你已经知道了什么?

  学生1:我知道什么样的物体是圆锥,还知道圆锥各部分的名称。教师请该生上台用实物进行介绍。

  学生2:我还知道圆锥的高只有一条。老师让该生上台利用实物具体介绍高从哪儿到哪儿。

  学生3:我知道圆锥的侧面展开是一个扇形,底面是圆形。

  师:关于圆锥,你还想知道什么?

  学生1:我想知道圆锥的侧面积怎么计算?

  教师追问:你认为应该怎么计算呢?

  学生1:应该用扇形的面积加上底面圆的面积。

  教师肯定,同时说明:由于我们还没有学习扇形的面积计算方法,所以在小学我们不学习圆锥的侧面积计算。

  学生2:我想知道怎样计算圆锥的体积?

  教师追问:那你认为圆锥的体积应该怎样计算呢?大家想一想。今天我们就一起来研究圆锥的体积。(板书课题)

  2.引导学生独立思考,提出猜想。(1分钟)

  根据学生的各种猜想,教师进一步引导学生思考:我们学过哪些图形的体积计算?你觉得圆锥体积可能和哪种图形的体积有关?

  既然有人认为圆锥的体积可能与圆柱有关,那么,我们就借助圆柱来探究圆锥的体积计算方法,看看行不行?

  3.引导学生进一步观察、比较、猜测。(4分钟)

  (1)教师举起圆柱、圆锥教具,把圆锥套在透明的圆柱里面,让学生想想他们的体积之间有什么联系。

  (2)学生猜测。

  (3)既然圆锥的体积与圆柱有关,是不是随便一个圆柱都与圆锥的体积有关?我们回想一下,圆柱的体积与什么有关?(底面积和高)那么圆柱和圆锥我们就要研究的重点就放在底面积和高。引导学生说出以下几种情况:

  等底等高,等底不等高,等高不等底,不等高不等底

  你觉得所有的情况都要研究吗?我们看看老师列举的情况(课件),你觉得等底不等高,等高不等底,不等高不等底还有必要实验吗?当然,刚才同学们都是猜测,我们必须通过实验去验证。

  4.实验探究。(14分钟)

  (1)开始实验收集数据。

  师:圆锥的体积究竟与圆柱体积有什么关系?请同学们亲自验证。等底等高和不等底不等高的各种圆柱、圆锥的教具。实验要求:根据需要选用实验用具,小组成员分工合作,轮流操作,并做好实验数据的收集整理。

  1号圆锥

  2号圆锥

  3号圆锥

  次数

  与圆柱是否等底等高

  让学生先分小组议一议如何实验,再动手。

  学生动手实验,教师巡视指导。

  (2)汇报实验结果。

  师:观察大家的数据,你发现了什么?

  师:进一步观察,在什么情况下圆柱刚好能装下三个圆锥的水?

  师:是不是所有符合等底等高都有这样的关系?

  教师用课件再演示。

  (3)总结归纳。

  教师说明:可能同学们在实验过程中,不一定刚好是3次,可能差一点点,这是我们实验中允许的误差,由于我们知识所限,现在只能用实验法这样不太严格的方法来推导,将来你们将用到更加高深的数学知识来推导公式。但是数学家已经证明了这一结论,大家可以直接用。

  (4)小组讨论:你们发现了什么?得出怎么样的结论?

  (5)圆锥体积计算公式的推导。

  (5)加深理解公式。要求圆锥的体积,必须知道什么信息?

  三、巩固提高,解决问题。(12分钟)

  1.应用新知

  一个圆锥形的零件,底面积是28.26平方厘米,高是12厘米。这个零件的体积是多少? “底面积是28.26平方厘米”改为

  “底面半径是3厘米”、

  “底面直径是6厘米” 、

  “底面周长是18.84厘米”

  2. 打谷场上,有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?(回归问题)

  注意提醒学生简便计算。

  3. 做一做:一个圆锥形的零件,底面积是19平方厘米,高是12cm, 这个零件的体积是多少立方厘米?

  4.我是小法官。(判断题)

  5.拓展提高:把一个棱长是6厘米的正方体木块,加工成一个最大圆锥体,圆锥的体积是多少立方厘米?

  四、阅读教材,思考问题。(1分钟)

  今天的学习内容,请大家课后认真阅读课本。

  五、小结全课,分享体会。(1分钟)

  师:这节课我们探究了什么知识?怎样探究的?具体说一说。你对自己在本节课上的表现满意吗?你认为自己哪儿掌握的最好?还有什么疑惑?

  学习效果评价设计:

  (一)学生学习效果的评价

  1、一个圆锥的半径是3厘米,高是20厘米,求圆锥的体积是多少?

  2、一个圆柱的底面积是18平方分米,高是6分米,你知道与它等底等高的圆锥的体积吗?

  (二)学生学习状态的评价

  (1)对于今天这节课你的心情是:

  高兴(     ) 比较高兴(     )   一般(     )  不高兴(     )

  (2)这节课你举手的次数是:

  10次及10次以上(     ) 5次到9次(     ) 1次到4次(     )

  没举过手(     )

  (3)你觉得你在本节课中的收获大吗?

  大(    )  比较大(     )   一般(      )   没收获(      )

  六、作业布置,课外延伸。(1分钟)

  找找身边的圆锥,自己测量有关数据,编写一道与圆锥体积知识的题目有关并解决。

《圆锥的体积》课例分析 篇11

  一、教学目标

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  二、教学重、难点

  重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  难点:理解圆锥体积公式的推导过程。

  三、教具学具

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  四、教学流程

  (一)创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面最大的;

  生:我选择高是最高的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  (二)设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:1、实验材料,任选沙、米、水中的一种。

  2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。  

  (生进行实验操作、小组交流)

  师:1、谁来汇报一下,你们组是怎样做实验的?

  2、通过做实验,你们发现它们有什么关系?   

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则v圆锥=sh÷3即v圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  五、联系生活,拓展运用

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。(     )

  一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是(     )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。(    )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12     h=2.5 

  r=4,        h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点?  v锥=1/3sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  活动五:整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

《圆锥的体积》课例分析 篇12

  一、说教材:

  1、说课内容:

  圆锥的体积。(小学六年级数学第十二册第二单元《圆柱和圆锥》中《圆锥》的第二课时)

  2、教材简析:

  圆锥是小学几何初步知识最后一个单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形。圆锥的体积也是在学习过长方体、正方体和圆柱体积的基础上的又一个延伸,也为以后学生系统学习立体几何打下基础。

  3、教学重点:能正确运用圆锥的体积计算公式求圆锥的体积。

  教学难点:理解圆锥体积公式的推导过程。

  4、教学目标:

  (1)知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;

  (2)能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;

  (3)德育方面:引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

  二、说教法:

  教育家布鲁纳说过:“教学不是把学生当成图书馆,而是培养学生参与学习的过程”。学生是学习的主体,因此我在设计教法时,根据本节课的特点,结合小学生的认知规律,采用以下几种教法:

  以谈话法、实验法、观察法为主,以讨论法、练习法为辅,实现教学目标。在教学中,既充分发挥学生的主体作用,又调动学生积极主动地参与教学的全过程。本节课引导并演示了两个实验。

  第一、让学生比较圆柱和圆锥是否等底等高。

  第二、在“等底等高”的条件下通过装水实验比较圆锥与圆柱的体积。使学生理解“等底等高”的条件下,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。

  通过小组讨论、全班交流,归纳、推导出圆锥体积的计算公式:         v=1/3sh。

  教学准备:

  多媒体课件。

  三、说学法

  “人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。因此我在讲求教法的同时,更重视对学生学法的指导。

  1、学生学法:观察法、实验法、探索法。学生在学习圆锥体积公式的推导时,通过操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。

  2、在教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。

  四、说教学程序:

  本节课我设计了以下五个教学程序:

  1、复习旧知,做好铺垫。

  利用复习圆柱、圆锥的认识和圆柱的体积公式及其应用,为新知识的迁移做好铺垫。

  2、谈话激趣,导入新课。

  很多同学都喜欢吃冰淇淋,你们看,冰淇淋的形状是什么样的?你们想没想过一个圆锥筒能装多少冰淇淋呢?这就是这节课我们大家一起探究的内容。(板书课题)

  3、实验操作,探究新知。

  (1)通过引导,课件演示,学生观察,然后出示三个问题,让学生展开讨论:

  问题一:刚才演示的圆柱、圆锥,它们有什么关系?

  问题二:将空圆锥装满水往空圆柱里倒,倒了几次才能将空圆柱倒满?

  问题三:你有什么发现?

  (2)汇报交流:

  圆锥的体积是与它等底等高圆柱体积的1/3,圆柱的体积是与它等底等高圆锥体积的3倍。

  (3)师生共同归纳公式:圆锥的体积等于和它等底等高的圆柱体积的三分之一,即v=1/3sh(板书公式)

  (4)强调:等底等高两个条件缺一不可。

  4、尝试练习,巩固提高。

  (1) 想一想,议一议,说一说。

  ①、已知圆锥的底面半径r和高h,如何求体积v?

  ②、已知圆锥的底面直径d和高h,如何求体积v?

  ③、已知圆锥的底面周长c和高h,如何求体积v?

  通过本题的尝试练习,让学生熟练掌握公式。

  (2)运用所学知识解决实际问题。(指名学生板演)

  (3)学习例3。让学生尝试自己讲,教师加以补充。

  (4)反馈练习。

  由圆锥体积的实际应用、填表格、判断、拓展题四部分组成,拓展题让学生采用多种解法,同时使学生懂得圆柱削成最大的圆锥,削去的体积是圆锥体积的2倍。

  5、看书质疑,布置作业。

  ①通过这节课的学习,你学到了什么知识?

  看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生自己去质疑,从而实现课内向课外的延伸。

  ②布置课堂作业:练习四的有关练习题。

《圆锥的体积》课例分析 篇13

  教学内容:

  教材第11~17页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:

  长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1. 说出圆柱的体积计算公式。

  2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的`图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积13=底面积高13

  用字母表示:V= 13 Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

相关专题