高三上学期《一元二次不等式及其解法》导学案高三数学教案
高三上学期《一元二次不等式及其解法》导学案
一、教学内容解析一元二次不等式的解法是高中数学最重要的内容之一,在高中数学中起着广泛的应用工具作用,蕴藏着重要的数形结合思想,是代数、三角、解析几何交汇综合的部分,在高中数学中具有举足轻重的地位。
教科书中对一元二次不等式的解法,没有介绍较繁琐的纯代数方法,而是采取简洁明了的数形结合的方法,从具体到抽象,从特殊到一般,用二次函数的图象来研究一元二次不等式的解法。教学中,利用几何画板的动态演示功能,引导学生结合二次函数的图象探究一元二次不等式、一元二次方程、二次函数“三个二次”间的联系,归纳总结出一元二次不等式的求解过程。通过对一元二次不等式解集的探究过程,渗透函数与方程、数形结合、分类讨论等重要的数学思想。
一元二次不等式的解法是程序性较强的内容,探究中应注意对“特例”的处理,让学生注意对“特殊情况”的处理,才能让学习的内容更加完整。
因此,本节课教学的重点是围绕一元二次不等式的解法,通过图象了解一元二次不等式与相应函数、方程的联系,突出体现数形结合的思想。
二、教学目标解析
1. 通过对一元二次不等式解法的探究,让学生了解一元二次不等式与相应函数、方程的联系。
2. 掌握一元二次不等式的求解步骤,尤其是对“特例”的处理。
3. 通过图象解法渗透数形结合、分类化归等重要的数学思想,培养学生动手能力,观察分析能力、抽象概括能力、归纳总结等系统的逻辑思维能力,培养学生简约直观的思维方法和良好的思维品质。
三、学生学情分析
学生已有的认知基础是,学生已经学习了二次函数、一元二次方程、函数的零点等有关知识,为本节课的学习打下了基础。
学生根据具体的二次函数的图象得对应一元二次不等式的解集时问题不大,学生可能存在的困难:(1)二次函数是初中学习的难点,许多学生对二次函数的知识掌握欠缺,对本节课的顺利开展有一定的影响;(2)从特殊的一元二次不等式的求解到一般的一元二次不等式的求解,学生全面考虑不同情况下的解集有一定的困难。教学中,(1)教师可提前让学生复习二次函数的有关知识点,为本节课的学习扫清障碍。(2)利用几何画板的动态演示功能,通过变换二次函数图象,引导学生在变化中寻找不变的规律,从而得出影响一元二次不等式解集的因素,确定分类的标准,全面考虑一元二次不等式解的情况。
因此,本节课教学的难点是探究一元二次不等式 的解集。
四、教学策略分析
依据本节课的教学内容,采用启发引导式教学。教学中启发学生一元二次不等式的解法可以类比“一元一次不等式与一次函数、一元一次方程三者间的关系”,利用二次函数的图象进行求解。从特殊到一般,从具体到抽象,通过几何画板的动态演示,引导学生观察、猜想、主动发现一元二次方程、一元二次不等式与二次函数的关系,得出一元二次不等式的求解步骤。教学中让学生通过动手实践、自主探索、合作学习完成学习过程,从动态中观察、探索归纳知识。
为了有效实现教学目标,教学中通过几何画板动态演示函数图象上的点在移动时,随着横坐标的变化,纵坐标的取值变化情况,更直观地向学生展示 或 时对应的 的取值范围。利用图象的直观性,观察二次函数图象的变化对一元二次不等式解集的影响,恰当确定分类的标准,有效解决教学中的难点。
共3页,当前第1页123
相关专题